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ABSTRACT

A simple formula for the Newtonian drag coefficient is derived
for the blunted cone-sphere (''ice-cream cone'') at small angles of attack. Graphs
are presented for Cpy as afunction of cone semi-vertex angle from 6° to 30° and
"'bluntness ratio’’ (nose-radius/base-radius) ranging in tenths from 0to 0.5. For
given values of the body parameters, the weight required for the body to attain a

prescribed ballistic coefficient is then determined. Fineness ratios for different

specified cone-angles and degrees of bluntness are provided for reference.




Introduction. Newtonian impact theory makes two basic assumptions:
first, that the shock wave lies along the body.surface; second, that in striking the

body, the airstream loses the component of momentum normal to the surface-- the
flow is regarded as continuing along the surface with the tangential component of

momentum unchanged.

The local pressure coefficient obtained under the Newtonian hypothesis

therefore depends only on the local inclination of the surfaceto the airstream:

where v and v _are the free-stream velocity and its component normal to the body-
. * . : .
surface respectively. C_ is taken to be zero over those portions of the surface

shielded from the flow.

p

The second of the basic assumptions made above neglects centrifugal
forces associated with curvature of the body surface, and the condition of the first
assumption is attained only in the limit as Mg*»,y~0. (M, is the free-stream
Mach number and ¥ the ratio of specific heats.) In this connection, the relevant
parameter appears not to be the Mach number itself so muchas the ratio M /F,

where F is the body fineness ratio

F = Total body-length/Maximum body-diameter.

* See Appendix I
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For values of M /F less than 2 for example, Newtonian estimates of the local

pressure coefficient for cones have been found? to be in error by more than 17%. On
the other hand, Newtonian theory has been found to give qualitative and even quanti-
tative information of acceptable accuracy in practical cases of interest at hypersonic
speeds, and the following computations of drag coefficients and related quantities
should prove useful even at high altitudes when the contributions of viscous effects *

and ablation are incorporated.

The following sections are concerned with a single configuration at
small angles of attack. The body studied consists of a cone-frustum capped at both
ends by tangent spherical surfaces. Cone semi-vertex angles between 6° and 30° are
considered with bluntness ratios (nose-radius/base-radius) ranging in tenths from
0to 0.5. Under the assumption of negligible pitching and zero angle of attack, a
simple formula is derived for the corresponding Newtonian drag coefficients. This
was programmed for the IBM 7090, and the tabulated values of Cpy so generated have
been presented in graphical form. Also presented are estimates (based on Cp) of the
weight required for the body to have a prescribed ballistic coefficient. Fineness ratios

are given for reference.

The Drag Formula. The blunted cone-sphere configuration to be

considered has rotational symmetry. A coordinate system will be chosen with origin
at the nose and x measured along the axis of symmetry. (See Figure 1.) With the
surface then described by the radial distance R =R (x), the axial-force coefficient

Cx may be found by integration over the surface actually exposed to the flow:

* These are relatively important for sharp-nosed bodies during early re-entry.




Cx = i—- 5S‘Cpsin0ds

where A is the reference-area and 6 = arctan R'(x). *

If the angle of attack is small, so that the entire surface between the
}Slanes x =0and x = 4 is that exposed to the flow, and if furthermore the angular
pitch-rate q is negligible in comparison with the velocity v, then integration and

simplification ** lead to an approximate expression for the drag coefficient:

CD=CX=

Al !
4wj RO R' ()" ©)

o 1+ R’(x)2 .

where the interval [0, 4 ] is to be broken into three segments corresponding to the

different definitions of R over the nose, midsection, and base of the body.
A spherical tip of radius Rn 1s generated by revolving a segment of the
circle [x - R} 2 4+ [R(x)2 = an; the radial distance for the nose portion of the

body is therefore

R=[2Rnx-x2]l/2 for 0 = x =xj, (1)

* See Appendix I
** See Appendix II.
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where tangency occurs at x 1- We denote by n the (constant) semi-vertex angle of the
conical midsection, and note that ‘

Xy = Rn-Rnsinn

The radial distance for the midsection is them simply

R = [x+Xx)/sin n] tann for x} =x = X9, (2)

where the spherical back, having radius R, is tangent at

X9 = 4 - Rp sin n.

Finally, the portion of the spherical back which is not shielded from the airstream has
radiadl distance

R = RZ-&x-0)21Y2 forxy=x=t, @)

where the maximum radius of the body is Ry = R(W)

Computation of Cp as represented by equation (0) thus requires the

integration of three separate expressions,R being defined in the respective intervals
as noted above:




( 3
R, - x) /an for 0 =x =<xj,

3
RR 7 RR' sin2 n for X] =X =Xg, 4)

1+R'2

@ - »/R2  forx,=x=t.
The second expression is easily handled with R as independent variable going between

Rp cos nand Ry, cos 1, and the other two integrations are routine.

We shall find it convenient now to take as reference-area the maximum

cross-section of the body,

Substitution and integration of (4) in equation (0) then yields

Zp+sintn, ()

CD = 2 (- sin4 n)+2(1 - 32) sin2 7 cos
where we have introduced the ''bluntness ratio'' « = Rn/Rb as a convenient parameter.
A trigonometric identity now gives a simple formula for CD as a function of ¥ and 7

CD = x2 cos? n+ [2 - sin2 7] sin2 . 6)
The same technique demonstrated above has been used to find Cp for
the case of a blunted cone which has a flat back at distance x = £ from the nose. The

corresponding formula (obtained on replacing x, by ¢ in equation (4)) is offered for

comparison:

Cp = k% cost n+2 sin2 7 (flat back).
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The obvious similarity of the two expression conforms to the expected similarity of
body-shape when 7 is small. It should be noted that the formula we have derived for
the cone with spherical back differs from the flat-back case not only in the presence
of a (sin4 n)-term whose contribution may be negligibly small if x/n is large; but
also, for a given nose-radius, base-radius, and exposed body-length £ , the spherical

back gives a larger semi-cone angle 7 than does the flat back.

A final simplification of equation (6) gives a concise formula for the

Newtonian drag coefficient of a blunted cone-sphere at small angles of attack:

Cp = 1-[1-«2]costn

where k = Rn/Rb and A = ¢ sz.

Fineness Ratio It is easy to verify that the semi1-vertex angle 7 in a

blunted cone-sphere satisfies the relation
sinn = (Rb - Rn)/‘({, - Rn).

If the total body length is denoted by L, then 4 =L - R,, and we may use the fact
that the fineness ratio is F = L/2Rb to write instead

sinn = (1 -&)/Q2F - [k + 1]),

determining the angle n when the ratios of R;;, Ry, and L are known. The relation

between 7 and F expressed by this equation is presented graphically for different
values of the bluntness ratio  in Figure 4.




It may be of interest for comparison to note that the semi-vertex angle

n' for a flat-backed cone satisfies the relation

sinn' = (Rycosn' - Ry)/(L - R),
where for this case £ = L. It follows that if a cone with spherical back were io have
the same bluntness and fineness ratios, it would have to have a (larger) semi-vertex

angle 7, determined by the ratio

sinn _ 1-K
sin (cosn' -sinn' ) -«

Weights. While nearly constant over considerable altitude ranges in
the case of blunt-nosed bodies, the ballistic coefficient (or ‘‘weight-to.drag'' ratio)
W/CpA may vary appreciably at high altitudes for sharp-nosed budies. Viscous drag
is relatively insignificant at 50, 000 feet however, and common usage seems to base
W/CDA on the (pressure) drag at this altitude when no further qualification is mention-
ed. Since maximum deceleration of a high performance re-entry body might be ex-
pected to occur at an even lower altitude (determined by the ballistic coefficient and
the re-entry path angle), the Newtonian value of CD may therefore prove useful in

estimating the weight required for a specified ballistic coefficient to be attained.

If the desired ballistic coefficient is g, then substituting for the

reference-area A gives

W/RZ = xCpg.

#
i
3
3
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The accompanying graphs of W/Rb2 vs n for different values of x are based for

scaling convenience on a hallistic coefficient of 100 1bs/ft2. Hence, for a given semi-
vertex angle 7 (degrees), bluntness ratio «, and base-radius Ry(ft), the weight W (1bs)
necessary for a ballistic coefficient g (lbs/ft2) is given by

W= [(WR.R 2B

where the expression in brackets is the value read off from the appropriate curve.
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APPENDIX 1

The component of free-stream velocity V,, which is in the direction

of a normal Ti to the surface-element dS has magnitude

so the mass striking dS normally in unit time is the product of the volume generated

and the free-stream density P,
dm = e, (vp dS).

The rate of change of momentum of the mass striking dS in the direction of the

normal gives the local pressure-force

dF = (p-p)dS = v dm = p,v2ds,

where p and p_ are the local pressure and the free-stream pressure respectively.

As a function of the local pressure difference (p -p ) and the free-

stream dynamic pressure

N

the local pressure coefficient




thus depends only on the local inclination of the surface to the airstream. (The

flow is considered to be completely separated with Cp = 0 over those portions of the
surface shielded from the flow.)

We are concerned with a smooth body having axial symmetry. Its
surface, accordingly, may be described by giving the radial distance R as a differ -
entiable function of just the distance x measured from the nose of the body (as origin)
along the axis of symmetry The local inclination of the surface with respect to

this axis is then
¢ = 8(x) = arctanR'(x) .

When there is an angle of attack ¢, the local pressure coefficient
varies not only with x but also with the angle w measured in a plane orthogonal to

the axis. (See Figure 1) Cp is thus dependent on «, 6, and w.*

The above relations being understood, the force acting on an area-

element dS may be expressed simply as
dF = ds.
4 Cp,
The component of this force in the direction of the axis is then (sin 8)dF, and

integrating over the portion of the surface actually exposed to the airstream gives

the total axial force

i
3
,\‘\‘)
2

Fx = qwgg Cps'mOdS.

* See Appendix II.
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The non-dimensional axial-force coefficient CX’ defined with respect to the

reference-area A by the relation

may therefore be represented in the following form:

_ 1 .
CX = SS‘Cps1n6dS.

Expressing the element of area dS by ( R dw) (dx/cosf) and substituting formally

then gives

1 '
Cx =X S(SCPRR dw)dx

with integration limits corresponding to the surface exposed to the flow.




APPENDIX II

The longitudinal axis of symmetry of the body, directed positively
back from the nose, has been chosen as the X-axis of the body coordinate system.
The free-stream velocity vector is assurﬁed to be at a small angle of attack a (of
no greater magnitude than 1) relative to the X-axis, determining with it a plane in

which pitching occurs about the center of gravity x. gatan angular rate g.

With these conventions, the local normal component of velocity

v may be expressedl’3 in the form
Vi, = Ve COS a[sinf -tan o sinwcos 8] - gsinw[(x -xcg)cosa+R sin 61,

or equivalently, upon substituting for cos 6 and tan 6,

v, (% w) = Voo COS_Q l:R' - sin w <-——-3-— [RR‘+x-ng] +tan a>].

m Voo COS &

It then follows from definition of Cp that

2 (:os2 o

1+R'2

Cp (%, @ w) = R’ - G sin w)?

where

G (x) S [ RR'+x-xcg] +tan a.

V, COS &
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The entire surface correspondingto 0 <sx <4 and0 = w = 2» is
exposed to the flow at small angles of attack (a < n), so the surface integral defining
CX may be evaluated as an iterated integral with these limits on x and w. Taking

advantage of symmetry, we obtain

2 £ +2/2
Cy = = Y S R&R' x)C_ (x, o, w) dw dx.
X A [V o _”/2 p

It remains to substitute for Cp in the form obtained above:

+ar/2 5 . 9
g R' - Gsin w)?® dw = @R'2+G% L,
-w/2 2

L 3 L,
&~ Cx = l—éAlS. -&-g—-—dx-gcosza+ 2}\15 B—E—-—-—(Gcosa)zdx.
L © 1+R'2 0 1+R

The drag-force is directly opposed to the body's velocity-vector (relative to the flow)
at an angle o from the axis, and the integrand on the right is clearly bounded with q.
Hence the relation cos a ~ 1 for small « and the assumption that (q/vm)2 is negli-

gible leaves just the bracketted expression asserted in equation (0).

I3
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Fig. 1. Blunted cone-sphere.
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List of Symbols

angle of attack (from body axis to relative-velocity vector)

cylindrical coordinates, x along axis of symmetry
body-radius in (R, w) - plane

rate of change of body-radius along axis of symmetry
body center of gravity (distance from nose)

nose-radius, base-radius of body
"'bluntness ratio'’, ¥ = R /Ry,

total length exposed to flow, "'wetted'' length
total length of body

fineness ratio, F = L/sz

semi-vertex angle for conical midsection
local inclination of body surface, @ = arctan R’ (x)
angular pitch-rate about transverse axis through x

cg
local pressure, local pressure coefficient

free-stream pressure, free-stream density

free-stream velocity, free stream Mach number

. 2
dynamic pressure, q = 5 Poo Ve
component of free-stream velocity normal to body surface

reference-area for non-dimensional coefficients

axial-force coefficient, Cy = axial force/q, A

drag-force coefficient, Cpy = drag force/q, A
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